Search results for "Interface properties"

showing 2 items of 2 documents

Adsorption of CO and N 2 molecules at the surface of solid water. A grand canonical Monte Carlo study

2020

International audience; The adsorption of carbon monoxide and nitrogen molecules at the surface of four forms of solid water is investigated by means of grand canonical Monte Carlo simulations. The trapping ability of crystalline Ih and low-density amorphous ices, along with clathrate hy-drates of structures I and II, are compared at temperatures relevant for astrophysics. It is shown that, when considering a gas phase that contains mixtures of carbon monoxide and nitrogen, the trapping of carbon monoxide is favored with respect to that of nitrogen at the surface of all solids, irrespective of the temperature. The results of the calculations also indicate that some amounts of molecules can …

Materials scienceInterface propertiesClathrate hydrateGeneral Physics and Astronomychemistry.chemical_elementGas phaseTrappingPhysics of gases010402 general chemistryAstrophysics01 natural scienceschemistry.chemical_compoundAmorphous materialsAdsorption0103 physical sciencesCometsMoleculePhysical and Theoretical ChemistryAdsorption isothermCarbon monoxideComputingMilieux_MISCELLANEOUS[PHYS]Physics [physics]010304 chemical physicsMonte Carlo methodsNitrogen0104 chemical sciencesAmorphous solid[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistrychemistry13. Climate actionChemical physics[SDU]Sciences of the Universe [physics]Complex solidsSelectivityCarbon monoxide
researchProduct

Influence of a Cu–zirconia interface structure on CO2 adsorption and activation

2021

CO2 adsorption and activation on a catalyst are key elementary steps for CO2 conversion to various valuable products. In the present computational study, we screened different Cu–ZrO2 interface structures and analyzed the influence of the interface structure on CO2 binding strength using density functional theory calculations. Our results demonstrate that a Cu nanorod favors one position on both tetragonal and monoclinic ZrO2 surfaces, where the bottom Cu atoms are placed close to the lattice oxygens. In agreement with previous calculations, we find that CO2 prefers a bent bidentate configuration at the Cu–ZrO2 interface and the molecule is clearly activated being negatively charged. Strain…

hiilidioksidiinterface propertiestiheysfunktionaaliteoriazirkoniumoksidikuparikatalyytittermodynamiikkathermodynamic cyclesnanoparticlesnanohiukkasetnanorodsadsorptiohiilidioksidin talteenotto ja varastointidensity functional theorycatalysts and catalysis
researchProduct